Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Res ; 204(Pt B): 112107, 2022 03.
Article in English | MEDLINE | ID: covidwho-1433213

ABSTRACT

The COVID-19 pandemic lockdown supposedly provided a 'window' of reinstatement to natural resources including the air quality, but the scenario after the phased unlocking is yet to be explored. Consequently, here we evaluated the status of air quality during the 8th phase of unlocking of COVID-19 lockdown (January 2021) at three locations of North India. The first site (S1) was located at Punjab Agricultural University, Ludhiana-PPCB; the second site (S2) at Yamunapuram, Bulandshahr-UPPCB; and the third site (S3) at Okhla Phase-2, Delhi-DPCC. The levels of PM2.5 showed a significant increase of 525.2%, 281.2%, and 185.0% at sites S1, S2 and S3, respectively in the unlock 8 (January 2021), in comparison to its concentration in the lockdown phase. Coherently, the levels of PM10 also showed a prominent increase of 284.5%, 189.1%, and 103.9% at sites S3, S1, and S2, respectively during the unlock 8 as compared to its concentration in the lockdown phase. This rise in the concentration of PM2.5 and PM10 could be primarily attributed to the use of biomass fuel, industrial and vehicular emissions, stubble burning considering the agricultural activities at sites S1 and S2. Site S3 is a major industrial hub and has the highest population density among all three sites. Consequently, the maximum increase (295.7%) in the NO2 levels during the unlock 8 was witnessed at site S3. The strong correlation between PM2.5, PM10, and CO, along with the PM2.5/PM10 ratio confirmed the similar origin of these pollutants at all the three sites. The improvements in the levels of air quality during the COVID-19 lockdown were major overtaken during the various phases of unlocking consequent to the initiation of anthropogenic processes.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Particulate Matter/analysis , SARS-CoV-2
2.
Environ Sci Pollut Res Int ; 28(33): 45344-45352, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1188153

ABSTRACT

To control the spread of COVID-19, China has imposed national lockdown policies to restrict the movement of its population since the Chinese New Year of January 2020. In this study, we quantitatively analyzed the changes of pollution sources in Shanghai during the COVID-19 lockdown; a high-resolution emission inventory of typical pollution sources including stationary source, mobile source, and oil and gas storage and transportation source was established based on pollution source data from January to February 2020. The results show that the total emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and volatile organic compounds (VOCs) were 9520.2, 37,978.6, 2796.7, and 7236.9 tons, respectively, during the study period. Affected by the COVID-19 lockdown, the mobile source experienced the largest decline. The car mileage and oil sales decreased by about 80% during the COVID-19 lockdown (P3) when compared with those during the pre-Spring Festival (P1). The number of aircraft activity decreased by approximately 50%. The impact of the COVID-19 epidemic on industries such as iron and steel and petrochemicals was less significant, while the greater impact was on coatings, chemicals, rubber, and plastic. The emissions of SO2, NOx, PM2.5, and VOCs decreased by 11%, 39%, 37%, and 47%, respectively, during P3 when compared with those during P1. The results show that the measures to control the spread of the COVID-19 epidemic made a significant contribution to emission reductions. This study may provide a reference for other countries to assess the impact of the COVID-19 epidemic on emissions and help establish regulatory actions to improve air quality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL